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An “N-body” computer code is developed to study supersonic gas flows in a rarefied, 
strongly stratified medium. Results of numerical simulations both with and without an 
obstacle obstructing the flow are presented, focusing upon three dimensional effects. In 
particular, the systematic gas motions and density perturbations induced by a flat plate whose 
normal vector is parallel to the direction of umperturbed flow and perpendicular to the 
stratification gradient are discussed. Such a plate can be regarded as a useful approximation 
to a scoop in a gas centrifuge. 

I. INTRODUCTION 

The interaction of a stratified gas impinging supersonically upon a solid body 
comparable in size to the gas scale height is a problem which has received virtually 
no theoretical attention until recently. The problem, difficult as it sounds, is made still 
more intractable if we further stipulate that the gas is sufficiently rarefied so that the 
collisional mean free path of its constituent molecules is similar to the stratification 
scale length. Traditional methods of computing gas properties all fail in this regime. 
If the mean free path were much longer than the other relevant length scales, we 
could treat the gas as if it were collisionless and calculate its properties from the 
mean trajectories of noninteracting molecules, whereas a dense gas might be treated 
by the traditional fluid-dynamical equations. In the situation under consideration, 
however, we must develop a computational method which takes into account both 
interactions between molecules and the smoothing effects induced by the long mean 
free path. 

This problem has been little studied, of course, because there are few natural or 
artificial situations in which this combination of parameters occurs. For example, in 
the earth’s atmosphere, the mean free path does not become comparable to the scale 
height until some 500 km above the ground, where both approach 100 km (Allen [ 11) 
and the local one dimensional velocity dispersion (“sound speed”) is roughly 
lkms-'. Our hypothetical problem would then be equivalent to examining the 
“atmospheric” perturbations on an orbiting billboard approximately the size of Con- 
necticut. 

There is, however, one practical situation where these various length scales may 
converge. In a rapidly rotating gas centrifuge, the density scale height may be of 
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FIG. 1. Schematic diagram of the computational volume. Particles are injected at the x = 0 face. 
Acceleration is in the -y direction. The plate reflects particles. 

order 1 cm, while the mean free path, much shorter at the wall, may increase to 
centimeter scales near the center. If a solid object of similar size (e.g., a scoop) is 
introduced into the rotor and held fixed in the inertial frame, the hypothesized super- 
sonic relative velocities may easily be achieved. 

In the computer models to be described, we have inserted a flat circular plate (see 
Fig. l), assumed to be a diffuse elastic scatterer, into a stratified, supersonic gas 
whose scale height and mean free path (at the level of the plate’s center) are both 
comparable to the plate diameter. We orient the plate so that its normal vector is in a 
plane of constant (unperturbed) density (i.e., perpendicular to the stratification 
gradient, hereafter called the y or “radial” direction), and parallel to the free-stream 
(unperturbed) flow (hereafter called the x or “circumferential” direction). In this way 
we may examine the complicating effects introduced by the combination of inter- 
mediate mean free path and short scale height: if the gas were purely collisionless, 
regardless of the scale height, the plate would reflect impingent particles back 
upstream and reduce or leave unaltered the gas density at all points downstream; 
while an unstratified (long scale height) gas, regardless of its mean free path, would 
show reflection symmetry across the X-Z plane which includes the plate’s center [e.g., 
p(x,Y,+dy,z)=p(x,y,--dy,z) for all x,b,z]. 

In the following section we briefly describe the N-body, Monte Carlo technique 
which was developed for these calculations. We next describe the results of several 
simulations, comparing three dimensional effects induced by an obstructing plate to 
the “null” results of unobstructed flow calculations. We conclude with a discussion of 
the major features and limitations of our models and suggestions for further study. 
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II. COMPUTATIONAL TECHNIQUE 

A. Monte Carlo Particle Dynamics 

The classical equations of gas dynamics implicitly assume that the bulk fluid 
properties within any infinitesimal volume element depend only on the average 
behavior of its constituent molecules and the properties of adjacent elements. Long 
collisional mean free paths introduce nonlocal effects into the fluid picture, because 
each volume element may be influenced by all other elements whose distance is less 
than a few mean free paths. 

When we model systems whose significant dimensions are comparable to the mean 
free path, we may not employ the continuum Navier-Stokes equations. Instead, we 
compute the trajectories of individual particles, each of which is assumed to be 
“representative” of some (large) number N of real gas molecules. These particles will 
move at typical velocities, be subject to the same external forces, and reflect from the 
same solid boundaries as do real molecules, and will collide with one another 
sufficiently frequently that the collision rate per particle is the same as the rate 
expected per molecule. (This last condition makes the technique impracticably time 
consuming for computing any but rather long mean free path, low collision rate 
models.) The gas density and velocity distribution near any point are estimated from 
the number and velocities of computer particles found within a small volume element 
surrounding the point. 

The collision frequency per gas molecule v is related to the local number density n 
and average relative velocity 0, by the relation 

v = nav, = U,/(\/z A), (1) 

where CJ is the collisional cross section and ,l the mean free path. Thus, if our 
computer particles are to have the same collision rate, they must have the same mean 
free path (and relative velocity). Since the number density of computer particles is a 
factor N below that of real particles, the “effective” cross section C must be propor- 
tionately larger: 

Z = unmo,/npart = Nu. 

A straightforward computational method would be to follow the exact trajectories 
of all particles and calculate an interaction whenever a pair is found to come within a 
collision diameter of each other. However, this requires knowledge of the distance 
between all pairs of particles, and since computation time then increases with the 
square of the number of particles, high-precision computations would be hopelessly 
time consuming. Instead, we use a probabilistic, Monte Carlo method of collision 
calculations. 

In this technique (adopted from Bird [2, 3]), the trajectories of individual particles 
are followed exactly, but not the separation of pairs. Instead, at the end of each time 
step, pairs of particles within each (small) volume element (or “cell”) are randomly 
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chosen to collide, without regard to their spatial separation. The rationale for this is 
the near uniformity of the density and velocity field within a sufficiently small volume 
element, so that each particle represents N real molecules spread throughout the cell, 
and a pair of representative molecules may as easily be close together as distant. To 
ensure that this assumed, near uniformity obtains, it is highly desirable that the cell 
sizes be less than the mean free path. (This may not always be practicable in a highly 
stratified gas, whose A may vary by orders of magnitude.) 

Two particles in a cell are chosen at random; comparison of their relative velocity 
to a random number determines whether the pair is accepted as a “collision” (since 
molecular collision rate goes up with relative velocity, the probability of acceptance 
must be proportional to v,). The postcollision velocities of the pair are altered 
appropriately. For the models to be described, we have assumed elastic, rigid-sphere 
collisions, so that the pair’s relative velocity vector is randomly (and isotropically) 
scattered, while its magnitude remains unchanged. After the collision, a quantity of 
magnitude 2V/[k(k - 1) v,C] is added to a “time counter” for the cell in question, 
where k is the total number of computer particles in the volume V and U, is the pair’s 
relative velocity. Collisions are recorded within each cell until its time counter 
reaches the value of the integration time step At. Thus, the total number of collisions 
in a cell in one time step is roughly 

N&At) = k(k - 1) CAtt7,/(2V). (3) 

The collision frequency per particle (recalling that each collision affects two 
particles) is then given by ,?ikU,./V, which, as Eq. (2) shows, is equal to the molecular 
collision rate given by Eq. (1). 

We allow particles to participate in more than one collision per time step. As 
multiple collisions may introduce a bias into the model it is desirable to keep our 
computational time step less than a typical collision time, if possible. 

Our procedures need to be refined if the molecular density in the system to be 
modeled is very nonuniform, as would be the case in a stratified gas. If we were to 
use the same constant N to relate real molecules to computer particles everywhere in 
our system, the number of particles would either be too great for practical 
computation in dense regions or too small for reasonable statistics in rarefied regions, 
if not both. For a stratified gas, whose equilibrium, unperturbed density distribution 
is known, we can instead alter the proportionality constant Ni so that the number of 
particles is roughly the same in each cell i (Ni would then be proportional to the 
calculated equilibrium density). Note that the particle cross section Zi would vary 
from cell to cell (Eq. (2)). 

The most important subtlety required by this refinement involves particles which 
move from one cell to another. When a particle representing Ni molecules crosses 
into a region where each particle represents Nj molecules, new particles may need to 
be created (if Ni > Nj) or the particle itself may need to be destroyed (if Ni < Nj). 
The exact prescription is chosen by comparing the remainder of (N,/N,) to a random 
number between zero and one; if the random number is greater than the remainder, 
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the particle becomes Int(Ni/Nj) particles in cell j (note that if Ni < Nj, this requires 
us to “destroy” the particle), while a smaller random number converts the particle 
from cell i to Int(Ni/Nj) + 1 particles in j. If this necessitates the creation of new 
particles, they are given the same position and velocity perpendicular to the i-j 
border as the original particle, and the other two velocity components are chosen 
randomly from the velocity distribution appropriate for cell i. This prescription 
ensures the correct mass and perpendicular momentum flux across the cell border on 
average and a reasonable estimate of the transverse momentum flux (cf. Carter and 
Cashwell [4]). 

A more accurate representation of the transverse momentum flux would be 
obtained if newly created molecules had precisely the same velocity components as 
the original molecule. However, the two or more identical particles would give a 
misleadingly high statistical weight to that velocity and lead to an artificially low 
estimate of velocity dispersion in the new cell. This problem becomes worse as Ni/Nj 
increases. A possibly useful compromise between preserving average flux and realistic 
dispersions would be to give each new particle the velocity of the original, perturbed 
by a normally distributed random number with standard deviation given by the 
velocity dispersion of cell i. Calculations using this prescription are currently in 
progress. 

B. A StratiJied Gas Flow Model 

The computational volume of our models is a rectangular box of length 600 units 
(the x direction) and height and width both 200 units (see Fig. 1). (Because the 
significant physical scales are defined in terms of scale heights and mean free paths, 
and velocity in terms of gas sound speed, all of which may vary in actual physical 
problems, we choose arbitrary units for both size and speed, and hence, time.) The 
gas is injected at the x = 0 face with a one-dimensional velocity dispersion of 5 units 
and average speed of 20 to 30 units (Mach 4 to 6). A constant acceleration is 
imposed in the -y (“outward”) direction, whose magnitude is given by the formula 

g = 2):/r = (MvJ2/r, (4) 

where v, and vd are, respectively, the average free-stream (x) velocity and one dimen- 
sional velocity dispersion, M is the corresponding Mach number (v,/v,), and r an 
adjustable parameter representing the distance of the computation region from a 
hypothetical center of rotation. For most of the simulations to be described, r was 
chosen to be 800 units. The density scale height H of the gas, defined by the relation 

is then given by 

4~) = 4~4 exp1H.v -~,)/f$ (5) 

H = vi/g = r/M’, (6) 

varying from 50 to 22 units as M varies from 4 to 6. 
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Since the collisional mean free path is inversely proportional to density [Eq. (l)], 
which falls exponentially with increasing y [Eq. (5)], we see that A must increase 
exponentially with the same scale height H. We will model a system where A, at the 
midplane of y (y = 100 units, hereafter called y,,) is 20 units long. We divide our box 
up into 24 slices in x, 5 in z (the “axial” direction), and 8 or 9 levels in y. For the 
purposes of defining y-dependent collisional cross sections for the particles (see 
above), we have assumed that the density of an equilibrium unperturbed flow will fall 
off with radius y as given by Eq. (5) and that a uniform number of computer particles 
will be followed in each y level, so that the local particle cross section Ci in cell i 
must be given [see Eqs. (I), (2), (5)] by 

zi =C(~o)expl-(~i -Y,)/HI = v/t& k’h> exP[-Oi -~o)lHly (7) 

where k’ is the number of particles required in a cell of volume V at level y, to give 
the “standard” mean free path A0 (=20). Note that if the actual particle density varies 
above or below the unperturbed, ideal value, the cross sections remain unchanged in 
each cell, SO that the actual collision rate and mean free path will vary appropriately. 

Particles are injected into the model at the x = 0 face and followed until they leave 
it again. The input rate is chosen so that, if the only “open” face through which 
particles are lost is the x = 600 face, the total number of particles in the (unper- 
turbed) box would be 12,000. However, because it is at present impossible to model 
the entire interior of a gas centrifuge or other highly stratified system, we must resort 
to somewhat artificial boundary conditions. For most of the calculations to be 
described, we make all faces open (“vacuum” boundaries) except for the y = 0 plane 
(this must be reflecting, or the constant -y acceleration will quickly empty the box of 
particles. Because the y = 0 plane specularly reflects particle velocities, it acts as an 
artificial plane of symmetry and may introduce nonphysical effects into the 
calculation. This is discussed further in Sections 1II.E and IV.). Thus, we will find 
that the average density towards high x (“downstream”) is lower than realistic, as 
particles leaking out the y = 200 and z = f 100 faces are not replaced by particles 
coming in from outside. Because particles are introduced at high Mach number, 
though, we expect that the density of those which reach the downstream face will be a 
significant fraction of the density that a correctly modeled system would have. In 
order to calibrate the simulations of perturbed flows, we have run a few simulations 
in which particles are allowed to flow unobstructed through this “leaky tube”; the 
results will be described in the following section. We have also experimented by 
making all the faces (except the x = 0 and x = 600 planes) specularly reflective, SO 

that no leakage occurs. In a real gas, of course, the boundary effects would be deter- 
mined by physical conditions far from our small, selected volume (e.g., at a 
certrifuge’s wall), and these cannot be anticipated for our models. We may 
reasonably hope, nonetheless, that our two kinds of artificial conditions (vacuum and 
reflective boundaries) may bracket the expected behavior. 

Within this gas flow we place a circular plate of diameter 50 units. It is assumed to 
be a diffuse elastic scatterer; that is, particles which strike it are reflected in a 
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randomly chosen direction with unchanged velocity magnitude. The plate’s normal 
vector is pointed towards the direction (-1, 0, 0) so that it is perpendicular to the 
incoming flow. The center of the plate is at (x0, y,,, z,,) = (200, 100, 0), one third of 
the way down the central streamline, midway between the y and z faces, where the 
unperturbed mean free path should be 20 units. 

The simulations were all performed in Cartesian coordinates, with constant H, g, 
and free stream u,. If the acceleration were a centrifugal effect due to rotation, each 
of these quantities would vary with radial distance y while the direction of 
acceleration would vary with circumferential location x. As long as the height of the 
model volume (200 units) is much smaller than the mean radius (r = 800 units), we 
anticipate little effect upon our qualitative results. Because particles in low density 
regions of real centrifuges travel along straight paths of approximate length L rather 
than circular orbits, our assumed constant, centrifugal acceleration [Eq. (4)] is valid 
only where L & r. This is true for most of our computational region, but prevents our 
extending the Cartesian approximation much farther inward. Of perhaps greater 
significance is the fact that “centrifugal force” is velocity dependent, not constant for 
all particles. To examine this effect, we have computed a number of models in which 
the acceleration magnitude is proportional to U: for each particle. The results were 
found to be qualitatively similar to constant-acceleration models, so we feel justified 
in applying our constant-g results to rotating systems. 

As stated above, our results should be applicable to any system with the stated 
ratios of scale height and mean free path to obstacle size and streaming velocity to 
sound speed. Consequently, we have left the dimensional quantities in arbitrary units. 

III. RESULTS 

A. Calibration Model: No Obstacle 

In order to estimate the inaccuracies introduced into our computations by the 
vacuum boundary conditions, we have run several simulations with no plate. Particles 
are injected at the x = 0 face with average V, = 20 units (Mach 4) and followed until 
they left the far end or any of the open sides. In a true, constant-acceleration 
equilibrium, we would expect no deviation from the mean input velocity (uX, 0,O) 
with position, and a uniform density of computer particles [i.e., molecular density 
falling exponentially, with scale height given by Eq. (6)]. 

Figure 2 shows the resulting mean velocity fields for Case 1, a Mach 4 run 
(H = 50 units). Each velocity point represents the average of some 50 determinations 
of the mean velocity for the appropriate cell, the individual determinations taken at 
intervals of 10 time units (one third the time required for an average particle to travel 
the length of the tube). Estimated random errors for each point are in the range 0.2 to 
0.4 unit. 

Figure 2a shows the deviation of v, from its input value as a function of x location, 
for different y levels, in the z slice -20 < z ( 20. We see a slow, monotonic rise to 
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x 

FIG. 2. Velocity fields for Case 1 (M = 4, ~1~ = 5, H = 50, and no obstacle): (a) deviations of z‘, 
from 20 in the slice -20 < z < 20, for all J levels. (b) 0,. in the slice -20 < z < 20, for all y levels. (c) 
~1;. for all J’ levels and z slices. The five clumps. from top to bottom, represent I= 80, 40, 0, -40. -80. 

about 1.5 units as x (= travel time), increases, suggesting that slower particles are 
preferentially scattered out of the computational volume (their collision rate is 
similar, but it requires more time, therefore more chances for collisions, before they 
traverse the box). The effect clearly does not depend significantly on y. Equivalent 
figures for different z slices are virtually indistinguishable, indicating no z depen- 
dence, either. 

Figure 2b shows a plot of uY versus x for all y levels in the same z slice. The 
outermost levels (low y value, near the reflecting boundary) show no significant 
deviation from zero. However, the innermost two y levels have significantly positive 
velocity. Particles there may move inward from the outer layers (i.e., towards 
increasing y), but there are no particles past the inner vacuum boundary to move 
outward; thus, these layers show a net inward flux. There is little x variation beyond 
the first few x slices, and the other z slices are found to exhibit similar behavior. 

Figure 2c shows the variation of v, with x. Each cluster of curves represents the 
various y levels in a single z slice, whose centers, from top cluster to bottom, are at 
? = 80, 40, 0, -40, and -80. We see that U, is roughly proportional to z position, 
again representing the leakage of particles out of the box. There is no significant y 
dependence. 
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Figure 3 shows contours of equal particle densities for this run projected against 
the x-y axis. A correctly represented system would, of course, show uniform density. 
The contours represent linearly spaced isodensity levels varying from 12 at the left 
(low x) to 4 in the upper right (high x, high y). We see, then, that the boundary 
conditions we have chosen allow our “uperturbed’ density to fall by a factor of 3 
from one end of the box to the other. Note that because we have plotted particle 
density, the exponentially varying ratio of particle to gas molecule number has been 
factored out. A contour plot of gas isodensity would show nearly horizontal 
stratification, the particle loss apparent only as a slight “tipping” of the contours 
towards the lower right. 

Figures 2 and 3 indicate that the effects of the artificial boundary conditions, while 
far from negligible, are nevertheless orderly and predictable. As long as our 
simulations with obstacles are at similarly high Mach numbers, we should be able to 
separate the effects of the modeled perturbation from those of the vacuum boundaries. 

A similar, no-obstacle simulation has been carried out with a Mach 6 gas (Case 4, 
H = 22 units). The deviations of both density and velocity from position- 
independence were comparable, but the maximum v, deviation was reduced (to about 
0.8) and the density at high x was slightly more than half that at the low x end. This 
confirms our supposition that higher Mach number simulations show reduced leakage 
effects. A third run (Case 6) with Mach 4 but H = 25, showed results very similar to 
those of Case 1. 

B. Plate M = 4 

Case 2 represents a Mach 4 model (H = 50 units) in which a 50-unit diameter plate 
is inserted perpendicular to the incoming flow, 200 units downstream of the x = 0 
boundary. Figure 4 shows the velocity field in the central (-20 < z < 20) slice, which 
contains the plate center. Figure 4a shows the sudden dip in u, which the obstacle 
produces in the central y layers. Downstream of the obstacle o, approaches its unper- 
turbed (Case 1) value. The z symmetry of our system results in no net z motion in 
this central slice. However, U, in the innermost y levels of this slice (Fig. 4b) is 
considerably enhanced over that in Case 1, especially between 50 units upstream and 

FIG. 3. Contour plot of particle surface density, projected onto the X-J’ plane. J’ increases upward, x 
to the right. The contour levels are linear, separated by one (arbitrary) density unit, and decline from I2 
at left to 4 at upper right. 
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FIG. 4. Velocity fields for Case 2 (M = 4, ud = 5, H = 50, and plate in), for all y levels in the slice 
-20 < z < 20. (a) Deviations of L’, from 20, (b) v,., (c) u,. 

100 downstream of the plate. The downstream enhancement is a collisional effect, 
due to the scattering produced when the deflected stream interacts with the incoming 
stream. 

Figure 5 shows the situation in the uppermost (60 < z < 100) layer. The v, and vz 
velocities show dips and peaks, respectively, but of low amplitude and spread over a 
broader Ax, Ay region than the v, dip near the plate. The inner-layer vY enhancement 
is only slightly reduced from that in Fig. 4b. The position of maximum perturbation 
is shifted downstream of the plate for each velocity. We see that the perturbed 
velocity in the (inner y, upper z, middle x) cells of this model is directed more nearly 
in the +y than the +z direction. 

The velocity fields in the (20 < z < 60) slice are intermediate between those shown 
in Figs, 4 and 5. Both velocity fields and density distributions below the plate (z < 0) 
are, within stochastic errors, z reflections of those above. 
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FIG. 5. Velocity fields for Case 2, for all J’ levels in the slice 60 < z < 100. (a) t’, ~ 20, (b) E,., 
(cl Vi’ 

Figure 6 shows the particle density contours projected against the x-y plane for 
three z slices centered on the values (from top) z = 80, 40, 0. At the plate level 
(z = 0), there is a strong compression where the incoming stream strikes (this would 
be a strong shock if 1 were much shorter) and a low density region behind the plate. 
The isoparticle contours spread out behind the shock almost symmetrically around 
y = y,. However, as we move upwards the density perturbation becomes far less 
symmetrical: a ridge of increased density moves preferentially inward (high y) from 
the plate level in the z = 40 level. This effect is a result of the short scale height of the 
system. In the top (z = 80) level, little difference from that in Fig. 3 is apparent. 

We emphasize that Fig. 6 shows (computational) particle density; in contrast, gas 
contours show horizontal stratification as the principle effect. Figure 7 is the gas 
isodensity plot for Case 2 in the central (z = 0) slice. Only immediately before and 
behind the plate is the density perturbation sufficient to “break” the stratification. 
Elsewhere (and in other z levels) the perturbation only shows itself as alterations in 
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FIG. 6. Particle-density contours for Case 2. Contour levels are linear and separated by 1 unit. 
From top, slices are those centered at z = 80, 40, 0. Hatched regions represent local minima. Density 
decreases to the right, in general. 

the slope or crowding of the stratification contours. We see, then, that locally 
significant density changes may have only minor effect on large-scale appearance, yet 
still considerably alter the velocity field (Figs. 4, 5). 

C. Plate, M= 6 

Case 3 represents a model similar to Case 2, but with a Mach number of 6 
(H = 22 units). The z = 0 level shows tremendous velocity fluctuation (Fig. 8). The v, 

FIG. I. Molecule-den&y contours for Case 2, in slice -20 < z < 20 (contains plate center). Contour 
levels are logarithmic, separated by Dex(O.05). Maximum density is at bottom (.v = 0). 
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curves show the same sharp dips as does Fig. 4, but with still greater amplitudes (in 
fact, the perturbation amplitudes are about the same fractions of the undisturbed, 
free-stream velocities in both Cases 2 and 3). However, V, hovers below zero far 
downstream, particularly in the innermost cells. Meanwhile, uY (Fig. 8b) shows quite 
strong inward motion in all but the outermost cells. As usual, the z reflection 
symmetry prevents any net v, motion in this level. 

In the uppermost z slice (Fig. 9), the velocity field shows much the same trend that 
we saw in Case 2, again with increased perturbation amplitude. Here, too, the u, 
perturbations show reduced amplitude, broader spatial extent, and downstream 
shifting of their peaks compared to the central z slice. Notice that v, does not return 
to its unperturbed value in the innermost y levels. Figure 9b shows the strong inward 
expansion exhibited by uY. As was true for Case 2, the peculiar velocity in the (high 
y, high z, middle x) cells is primarily inward rather than upward, but Fig. 9c shows a 
fairly strong perturbation even in u,. 

Figure 10 shows the particle isodensity contours for the same three z slices as 
Fig. 6. Here the effects of the plate may be seen even in the uppermost (z = 80) level, 
in the form of a high (relative) density region near the innermost surface. At the plate 
(z = 0), the contours do not show the y symmetry apparent for Case 2; instead the 
(particle) density is markedly greater at high than low y. In the z = 40 level, the y 
asymmetry is still more marked, with a high density ridge pointing towards high x 
and y and a low density region displaced outward of the plate center. 

Remarkably, the molecular isodensity contours for Case 3 show less, rather than 
more, small scale detail than do those for Case 2. This is a consequence of Case 3’s 
reduced scale height, so that on large scales the exponential falloff disguises the local 
density perturbations, which nonetheless quite significantly alter the velocity field. 

D. Short Scale Height, M = 4 

Case 5, which has a Mach number 4 but scale height of only 25 units, is designed 
to determine whether the differences between Cases 2 and 3 are primarily due to the 
different speeds or different scale heights. Remarkably, almost all of Case 5’s results 
were extremely similar to either Case 2 or Case 3. 

The v, perturbation is intermediate between that in Cases 2 and 3, showing fairly 
high amplitude dips which extend across several y levels but return near to zero 
downstream, as is true for Case 2’s inner levels (but not Case 3). The z velocity 
resembles that in Case 2 for all z slices while u,, resembles that in Case 2 except for a 
slightly increased amplitude. On the other hand, the particle density contours are very 
similar to those of Case 3: a strong, high density ridge extends to a high (relative) 
density region at the innermost border, while a rarefied region appears downstream 
and slightly outward of the plate center. 

This gratifying separation of effects aliows us to distinguish their principal causes. 
While the form of the perturbed velocity is most strongly influenced by the incoming 
speed, the density perturbations are strongly affected by the magnitude of the scale 
height. 
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(c) v:. 

E. Rejlecting Tube, M = 4 
In an effort to determine how strongly the foregoing results may be influenced by 

the vacuum boundary condition, we consider one further case, Tl. This is similar in 
all respects to Case 2 (H = 50, M = 4), except that all of the y and z boundaries are 
specularly reflecting. Since particles may move in or out only through the x = 0 and 
x = 600 faces, we nearly eliminate any leakage effect, although the boundary 
reflections introduce unphysical effects of their own. 

5X,/55/3-2 
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FIG. 10. Particle density contours for Case 3. Contour levels are linear and separated by 1 unit. 
From the top, slices are centered at i= 80, 40, 0. 

The results are very similar to Case 2. In contrast to the nonzero velocity fields 
due to leakage in Case 1 (Fig. 2), the unperturbed fields in a reflecting tube should be 
zero (as indeed they are far upstream and downstream of the plate). The perturbed 
fields in Case Tl (150 < x < 300) are just about what one would get by subtracting 
the curves of Fig. 2 from those of Figs. 4 and 5: bulges or dips of greater or lesser 
amplitude and width, gradually approaching the unperturbed value (i.e., zero) far 
downstream. The principal systematic difference is that uY in the innermost y levels 
remains close to zero. This is a consequence of inward-moving particles being 
reflected back outwards at the wall. 

The density contours of Case Tl are also qualitatively similar to those of Case 2 
(Fig. 6), showing a moderate density ridge stretching towards high y and x and a 
rarefied region almost centered at y,. The only significant differences, the higher 
overall density downstream and particularly at the inner y boundary, are obvious 
results of the reduced leakage. In general, the gratifying similarity of Cases 2 and Tl 
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leads us to believe that, despite the uncertainties of the boundary conditions, we may 
make qualitative predictions about the behavior of a stratified, rarefied, supersonic 
gas. 

F. Specularly Reflecting Plate, M = 4 

Case Sl is designed to test the effects that our plate’s reflection properties have on 
the gas flow. In this case, particles impinging upon the plate are reflected specularly, 
i.e., their x velocities are reversed while their y and z velocities remain unchanged, in 
contrast to the isotropic scattering displayed by our other models. In all other 
respects, Case S 1 resembles Case 2, with open boundaries (except at y = 0), M = 4, 
and scale height H = 50. 

Remarkably, the velocity fields in Case Sl have no statistically significant 
differences from those in Case 2 (Figs. 4, 5), possibly excepting a marginally deeper 
preplate dip in u, (cf. Fig. 4a) and slightly greater uY and v, expansions far from the 
plate axis (cf. Figs. 5b and 5~). The particle densities are just as similar, Case Sl’s 
contour diagrams being essentially indistinguishable from Fig. 6. 

The surprising similarity of results for this specular reflector to the diffuse 
scatterers of our other models can be understood when we examine the dispersions in 
the X, y, and z velocities. It turns out that the molecular mean free path immediately 
in front of the plate is sufficiently short (the local threefold increase over average 
particle density reduces 1 near the plate axis to about 7 units) that the velocity 
dispersions are nearly isotropized within one cell-width of the plate. Thus the actual 
direction of the postscattering particles matters little, as long as the velocity 
magnitude remains the same, for they will immediately collide with incoming 
particles and scatter elastically and isotropically. This may no longer be true if the 
plate were a cold diffuse scatterer, so that impinging molecules lose velocity (and 
kinetic energy) in the reflection process. 

IV. DISCUSSION 

The simulations we have described, modeling the supersonic interaction of a 
rarefied, stratified gas with a flat “scoop” comparable in size to the gas scale height 
and mean free path, show qualitatively similar results despite the differences in Mach 
number, scale height, boundary conditions, and reflection law chosen. At the z level 
of the plate, an enhanced-density ridge forms in front of the plate and stretches 
downstream and inward from it, while a reduced-density region appears downstream 
and, in short scale-height flows, slightly outward of the plate location. These effects 
weaken as we move axially away from the plate, lingering longest as a density enhan- 
cement in the innermost (high y) levels. The circumferential velocity shows sharp dips 
immediately in front of the plate, which broaden, decline in amplitude, and shift 
downstream with increasing (axial) distance from it. The radial velocity shows a 
broad but strong inward motion at the plate level and in the innermost cells modeled, 
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which gets progressively weaker above and below plate level, while the axial velocity 
shows a symmetrical, subsonic expansion away from the plate center. 

The complicated nature of this gas flow, quite apart from its details, indicates that 
short scale height systems interacting with finite-sized solids cannot be effectively 
modeled in detail by two dimensional calculations. Figures 6 and 10 demonstrate how 
the density varies independently in all directions and shows no simplifying 
symmetries which might allow the problem to be recast into two dimensions. 

Perhaps the most obvious “three-dimensional” effect of the interaction of short 
scale heights with intermediate mean free paths is the net inward motion of the 
scattered gas (whose initial, postscattering velocity is symmetric around the plate 
axis). We have seen that in regions inward of the plate, the velocity is more nearly 
radial than axial (Figs. 5 and 9). The inward motion persists even in Case Tl, so it is 
not purely an artifact of the open boundary at y = 200 in the other models. However, 
due to the nearly-exponential density law, these regions have far smaller molecular 
density than the cells near y0 in which velocity is more nearly axial. Figure 11 
demonstrates a “macroscopic” measure of the importance of the radial motion. The 
mass flux through the innermost y boundary for Case 2 (Fig. 1 la) shows a strong 
bulge just downstream of the plate location (x, = 200) compared to the unobstructed 
(Case 1) flow; the maximum difference is about 1.3 flux units, declining far 
downstream. Figure 1 lb shows a similar comparison for mass flux through the top z 
boundary. Here the deflected flow reaches a maximum difference from the no- 
obstacle flow at about the same x value, but the difference is closer to 2.6 in the same 
mass flux units. Hence, the radial expansion revealed in these calculations, though 
locally strong, apparently plays only a secondary role in establishing global 
conditions. (Note that both boundaries considered in Fig. 11 were the same 
distance-100 units-from the plate center; boundaries at other distances would no 
doubt show different values.) The differential mass flux plots of the other obstacle/no 
obstacle pairs studied (Cases 3 and 4, Cases 5 and 6, Case Tl and a no-obstacle, 
M = 4 reflecting tube) showed very similar behavior to that in Fig. 11, even to the 
approximate magnitudes of the flux differences. 

We have predicted a number of general effects that obstructed flow in a centrifuge 
might produce. Are these predictions subject to experimental test? The local density 
perturbations shown in Figs. 6 and 10 might in fact be very difficult to map in a real 
system; Fig. 7 demonstrates that the exponential dependence will effectively mask all 
but the strongest perturbations, unless extremely accurate positioning is available. 
The velocity fields hold out more hope, however. In particular, the radial motion of 
the inward gas and the radial mass flux shown in Fig. 11 are important model results 
for which unambiguous tests should be possible. Moreover, the effects of a somewhat 
larger plate (compared to either scale height or centrifuge diameter) would be 
expected to enhance the density perturbations (cf. Sect. 1II.D). 

We believe that the Monte Carlo particle dynamics computational algorithm 
described in Section II and used for our simulations is a good choice for modeling the 
intermediate-A regime of interest here. The main problems arising from its use are 
spatial resolution and computer time requirements. The computational cells used to 
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6. 

FIG. 11. Mass fluxes through boundaries of Case 1 (crosses) and Case 2 (circles). Flux units are 
arbitrary, but the same for each curve. (a) Flux through y = 200 boundary (each point is a summation 
over all z slices at that x). (b) Flux through z = 100 boundary (each point is a summation over all J’ 
slices at that x). 

predict particle collision rates, local density, and velocity fields are of size 
25 X 25 X 40 units (x, y, z dimensions), not much smaller than the plate itself. In a 
short-2 gas this would give ample reason to fear that we are washing out small-scale 
structure and smoothing out shocks. However, we have seen (Figs. 6, 10) that most of 
the interesting small-scale structure is found at the y level of the plate center and 
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inward, where the collisional mean free path is 20 units or longer (much longer in the 
innermost layer). We assert that the gas cannot show meaningful structure on scales 
much smaller than the lesser of ,4 or H, and that our spatial resolution is therefore 
adequate for these regions. We predict, therefore, that the high-density ridges seen in 
Figs. 6 and 10 (and barely discernible in Fig. 7) are probably not narrow shocks and 
very likely look much as we have depicted them. 

However, the mean free path is much shorter than 20 units in the outermost y 
levels (particularly in the Mach 6 case). It is certainly possible that structure should 
develop here which is smaller than our cell sizes and is smoothed into invisibility by 
the coarse grid. Related to this is the fact that the collision time scale in these cells is 
much shorter than our computational time steps, so most particles near the outer 
boundary can be expected to experience several collisions per time step. These will 
completely randomize and isotropize particle velocity dispersions while preserving the 
mass, momentum, and energy of each cell as a whole. But this is just the effect we 
expect in this short-& near-continuum regime, so the high collision rate apparently 
introduces no new biases (as long as we are only simulating time-invariant models). 

Because of the large cell sizes (compared to 2) at low y, we are not confident that 
the relative smoothness of these outer regions is realistic. Simulations with much 
smaller cell sizes here, and consequently larger numbers of particles, would be 
required to confirm or deny our results. Nevertheless, where we do see structure, at 
the plate level and inward, the mean free path is long enough and the collision rate 
small enough that we feel confident of having an accurate portrayal. 

We have noted that uncertainty in our results may arise from our unrealistic 
boundary conditions. In particular, we speculated that the specular reflection of the 
lower y boundary might artificially enhance velocity and density perturbations. 
However, the similarity of our Case Tl to Case 2 suggests that the effects of 
reflection are relatively minor. A boundary which reflected like a “no-slip” surface 
moving with speed u, and temperature defined by ud might be more appropriate, but 
as this would only affect individual particle velocities, which are in any event almost 
completely randomized in the outer y levels, this further refinement would not be 
likely to have a significant effect on our results. 

A problem common to all particle representation of gases is that estimates of 
density, velocity, etc., in any volume element are subject to Poisson statistics with 
relative error proportional to the inverse square root of particle number. Good deter- 
mination of local values, therefore, demands very many model particles. Unlike deter- 
ministic particle-collision models, whose computation time goes up with the square of 
particle number, the Monte Carlo method described in Section II requires time 
linearly propertional to particle number (if the mean free path is fixed). If the system 
modeled is time-independent, we can get equivalent statistics (and computation time) 
by putting a great many particles into the system at once or integrating the effects of 
fewer particles over numerous time steps (the approach taken here). This is strictly 
true only if the number of particles is sufficient that a statistically significant number 
of collisions occurs in each cell during each time step. Towards the very inner parts 
of the computational volume, this may not be the case. 
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The computation time of the Monte Carlo algorithm is proportional to the collision 
rate per molecule, which can get uncomfortably high at the outer edge of a short 
scale height model. As a consequence, the Monte Carlo particle dynamics approach 
seems limited to regions 10 or fewer scale-heights across, inadequate to model an 
entire centrifuge. However, the high collision rate regime is precisely where the 
standard equations of hydrodynamics become appropriate, so it may be possible to 
write a hybrid computer algorithm, which uses regular hydrodynamics in high density 
regions and particle dynamics in lower density regions. 

We have already stated our belief that our Cartesian-grid models are fair 
qualitative approximations of rotating systems, that the positional dependence of the 
scale height and “centrifugal force” are of minor importance for our assumed 
dimensions (width and length of 200 and 600 units, respectively, compared to an 
assumed circumference 27rr = 5000 units), and that test runs with velocity-dependent 
acceleration are qualitatively similar to the constant-acceleration runs detailed above. 
However, the fact that a centrifuge is a closed, circular system may invalidate our 
assumption that the incoming particle flux (at x = 0) is an unperturbed, exponentially 
declining, Maxwellian gas. If the perturbations induced by a scoop extend a full 
circumference downstream, it would then be “running in its own wake,” and our 
models would not be self-consistent representations. Fortunately, it appears that, at 
the height and radial location of the plate, most of the perturbed quantities have 
nearly returned to their unperturbed values at the downstream end of the 
computational volume (compare Figs. 4 and 8 to 2, and 6 and 10 to 3). However, the 
inward particle flux at the innermost border has still not returned to equilibrium 
(Fig. 1 la), and the density there is still relatively high (see especially Fig. 10, top 
right). These deviations, locally great but rather small compared to densities and 
fluxes at the plate (cf. Fig. 7), might propagate as far as a circumference because the 
gas at the inner boundary is nearly collisionless (e.g., for Case 3, 1 N 1000 units at 
y = 200). A more complete modeling of the system would be necessary to determine 
whether such effects are significant, either a representation of an entire circular 
section of a centrifuge (of limited z width), perhaps using a hybrid fluid/particle code 
of the type discussed above, or a more modest extension of the present Cartesian 
“tube” to circumferential lengths, with the addition of periodic boundary conditions. 

We also speculate that model “scoops” of more realistically intricate geometries 
and shapes than the circular, perpendicular plate considered here may be 
computationally feasible and might lead to still more complex and interesting 
predictions. 
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